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The areal reduction factor (ARF) is a concept used in many hydrologic designs to transform a point pre-
cipitation frequency estimate of a given duration and frequency to a corresponding areal estimate.
Various methods have been proposed in the literature to calculate ARFs. Proposed ARFs could vary signif-
icantly, and it is unclear if discrepancies are primarily due to differences in methodologies, the dissimilar
datasets used to calculate ARFs, or if they originate from regional uniqueness.
Our goal in this study is to analyze differences among ARFs derived from different types of fixed-area

ARFmethods, which are suitable for use with precipitation frequency estimates. For this intercomparison,
all the ARFs were computed using the same, high-quality rainfall-radar merged dataset for a common
geographic region. The selected ARFs methods represent four commonly used approaches: empirical
methods, methods that are based on the spatial correlation structure of rainfall, methods that rely on
the scaling properties of rainfall in space and time, and methods that utilize extreme value theory. The
state of Oklahoma was selected as the study area, as it has a good quality radar data and a dense network
of rain gauges. Results indicate significant uncertainties in the ARF estimates, regardless of the method
used. Even when calculated from the same dataset and for the same geographic area, the ARF estimates
from the selected methods differ. The differences are more pronounced for the shorter durations and lar-
ger areas. Results also indicate some ARF dependence on the average recurrence intervals.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Point precipitation frequency estimates, such as those from
NOAA Atlas 14 (e.g., Perica et al., 2013), are used in many infras-
tructure designs in the United States (US). These estimates are rep-
resentative only for a limited area around the point and as such
cannot be used in many applications that require areal precipita-
tion frequency estimates. Approximating the areal estimates by
averaging corresponding point precipitation frequency estimates
will result in overestimation of areal estimates, particularly for lar-
ger areas.

The areal reduction factor (ARF) is a concept that has been
widely used in engineering design to convert point precipitation
for a specified duration D [T] and frequency into areal precipitation
over an area A [L2] for the same duration and frequency. Frequency
can be represented by the average recurrence interval ARI (also
known as return period) or the annual exceedance probability
AEP (for more information on the definition and difference
between the ARI and AEP, see Perica et al., 2013). Typically, ARFs
are presented as a set of curves showing the variation of ARF with
A, D, and ARI.

ARFs that concur with precipitation frequency estimates are
normally developed using the so-called ‘‘fixed-area” (or ‘‘geographi
cally-fixed-area”) methods. They are distinct from ‘‘storm-
centered” areal reduction ratios developed based on the analysis
of individual storms, which are used to convert point estimates
of probable maximum precipitation to areal estimates. In this
study, the focus is on fixed-area methods.

Many fixed-area methods have been proposed to date for point-
to-area rainfall conversion. A comprehensive list of both fixed-area
and storm-centered methods can be found in Olivera et al. (2008)
and Svensson and Jones (2010). Svensson and Jones (2010) classify
ARFmethods into four main categories: (i) empirical methods (Bell,
1976; Natural Environmental Research Council, 1975; U.S.
Weather Bureau, 1958), (ii) methods that are based on the spatial
correlation structure of rainfall (Asquith and Famiglietti, 2000;
Roche, 1966; Sivapalan and Blöschl, 1998; Srikanthan, 1995), (iii)
methods that take advantage of the scaling properties of rainfall
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in space and time (De Michele et al., 2001, 2011; Veneziano and
Langousis, 2005), and (iv) methods that utilize extreme value
theory (Durrans et al., 2002; Allen and DeGaetano, 2005;
Lombardo et al., 2006; Olivera et al., 2008; Overeem et al., 2010).

Proposed ARFs could vary significantly, but since their quantita-
tive intercomparison is lacking, it is unclear if differences are pri-
marily due to differences in methodologies and/or the dissimilar
datasets used to derive them, or if they point out to distinctive
regional characteristics in the ARFs. The aim of this study is to ana-
lyze differences among ARFs from various fixed-area methods. For
this comparison, one representative method from each of the four
main categories listed above was selected. The selected methods
were used to calculate ARFs for a common geographic area and
using an identical dataset. More details on the study area and the
dataset used are given in Section 2. Section 3 provides a review
of the four selected ARF methods. In Section 4, we provide details
on the methods’ parameterization and present the ARFs. In Sec-
tion 5, we discuss differences among the different ARF curves.
Lastly, Section 6 summarizes the main findings and makes recom-
mendations for future work.

2. Study area and dataset

The state of Oklahoma, with an area of 181,035 km2, was
selected as the study area, primarily due to its dense network of
rain gauges and the availability of high-quality radar data
(Gourley et al., 2011; Koren et al., 2004; Seo, 1998; Smith et al.,
2004). Oklahoma is located in the central US between the Great
Plains and the Ozark Plateau. The terrain mostly contains a gradual
rise in elevation from east to west (plains), although mountain
ranges such as the Ouachita Mountains and the Ozark Mountains
are located in the eastern part of the state. Annual precipitation
increases from west to east, from approximately 400–1650 mm.
The highest annual precipitation is located in the east near the
windward sides of the Ouachita and Ozark Mountain ranges. More
information about the selected region is available elsewhere
(Gourley et al., 2011; Seo et al., 2004; Smith et al., 2004).

To determine the ARFs, we used precipitation data from the
National Center for Environmental Prediction’s (NCEP’s) Next-
Generation Radar (NEXRAD) Stage IV gridded precipitation dataset
(NCEP, 2014). NEXRAD is a network of 178 Doppler weather radars
(WSR-88D) across the US, operated by the National Weather Ser-
vice (NWS). This data are available at �4 km resolution and at a
1-h time step.

The predominant source of uncertainty in raw radar precipita-
tion estimates is the assumed relationship between the reflectivity
and precipitation amount (‘Z–R relationship’), which varies by pre-
cipitation type (e.g., Rinehart, 2004). Because precipitation is
sensed well above the ground surface, precipitation detected by
the radar may move large distances downwind or evaporate before
reaching the ground. Further uncertainty arises from the radar
technology itself, such as beam blockage and bright band errors
(Rinehart, 2004). Nevertheless, weather radar data for our selected
region has better than average accuracy, due to the relatively sim-
ple topography and no significant effects from snow or reservoirs
(Koren et al., 2004; Seo, 1998).

Rain gauges are generally considered to provide the most accu-
rate precipitation information at a given location, but still have
limitations. These limitations include instrumental errors
(Rinehart, 2004; Sieck et al., 2007) and undercatch due to wind
and erratic behavior of the mechanical aspects of the gauge during
intense rainfall (Lanza and Stagi, 2009; Molini et al., 2005). Also,
the interpolation of point precipitation to areal precipitation is sen-
sitive to the interpolation technique employed due to the high spa-
tial variability of precipitation, even in areas with dense networks
(Starks and Moriasi, 2009; Strangeways, 2007; Tobin and Bennett,
2009). This presents a significant challenge for ARF calculations,
particularly at sub-daily durations.

The Stage IV precipitation data is a merge of radar and rain
gauge data, meaning that the raw radar estimates have been
adjusted on the basis of rain gauge data (gauge-conditioned). Such
adjusted data have been shown to be consistently superior to the
raw radar data (Yilmaz et al., 2005; Young et al., 2000). Although
available since the 1990s, gauge-conditioned radar data are
considered accurate only from 2002, when the multisensor precip-
itation estimation algorithm was implemented on the radar data,
with rain gauge values taken from weather stations within the
NWS Hydrometeorological Automated Data System network
(Westcott et al., 2008). Gauge-conditioned radar data have
improved over time but they are still affected by uncertainties that
are both systematic and random in nature (Eldardiry et al., 2015;
Villarini et al., 2014). It is, however, recognized in radar hydrology
that radar data can be useful for calculating the statistics of
extreme events and that spatial pooling can often be employed
to compensate for having short radar records (Berne and
Krajewski, 2013).

Since the statistical methods used in the calculation of precipi-
tation frequency estimates, such as those published in the NOAA
Atlas 14 Volumes (Perica et al., 2013), are typically based on the
analysis of annual maximum series (AMS) data, the ARF methods
selected for this study also make use of the AMS data. We extracted
AMS for selected locations, durations and area sizes from gridded
hourly Stage IV precipitation data (hereafter referred to as radar
data) between 2002 and 2013. Locations at which we extracted
AMS data match the locations of the 386 rain stations in Oklahoma,
whose data were used in the NOAA Atlas 14 Volume 8 precipitation
frequency analysis (Perica et al., 2013). The area in Oklahoma out-
lined in Fig. 1 was selected for this study. This area was selected by
taking into consideration the climatology of heavy precipitation
and precipitation mechanisms within the larger Midwestern cli-
mate region of the US. This was done as part of the development
of the NOAA Atlas 14 Volume 8. Based on that analysis, the eastern
Oklahoma rugged terrain areas were excluded from the climate
region of the rest of the state of Oklahoma because heavy rain
events in this area follow different precipitation mechanisms due
to orographic effects. Additionally, the western panhandle of Okla-
homa has been excluded from this analysis to keep a relatively
simple regional structure.

To extract the AMS we followed an approach similar to the one
used by Overeem et al. (2010). For each selected location, we
identified a corresponding grid cell in the radar dataset. Then,
we calculated hourly areal average precipitation for areas of
1 � 1, 3 � 3, 5 � 5, 7 � 7, and 9 � 9 grid cells centered at the grid
cell of interest (which correspond to areal sizes of �16, 144, 400,
784, and 1296 km2, respectively). We analyzed ARFs for durations
of 1-h, 2-h, 6-h, 12-h and 24-h. For durations longer than 1-h, the
precipitation at each grid point was first aggregated to the 2-h,
6-h, 12-h, and 24-h duration at every hour. The area-averaged
accumulations for selected durations were then calculated for
each grid cell and each hour for areas of 1 � 1, 3 � 3, 5 � 5,
7 � 7, and 9 � 9 grid cells. Lastly, the annual maximum value
was extracted independently for each duration and area size,
allowing different AMS for different area sizes and durations at
the same grid point. With the assumption that the whole study
area is homogeneous with respect to the characteristics of
extreme precipitation, we combined the corresponding annual
maxima from all locations into a single AMS with a total length
of 4632 (hereafter referred to as regional AMS). This was done
for each combination of area size and duration. Fig. 1 illustrates
the AMS extraction process.



Fig. 1. (a) Selected locations in the study area for which AMS data were extracted. (b) Illustration of the approach used to extract areal average precipitation. For each selected
location and for each selected duration, areal average precipitation was calculated by averaging gridded radar data for 1 � 1, 3 � 3, 5 � 5, 7 � 7 and 9 � 9 boxes, centered at
the location. Since the native radar data is hourly, native data was aggregated to different durations prior to determining the areal average precipitation. (c) For each location,
the AMS data were extracted from the areal average precipitation for different combinations of duration and area sizes.
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3. Review of selected ARF methods

We selected the following methods to represent the 4 main
types of fixed-area ARF methods: (i) a variation of the US
Weather Bureau (1958) method for empirical methods (hereafter
referred to as the M1 method), (ii) Sivapalan and Blöschl (1998)
method for methods that are based on the spatial correlation struc-
ture of rainfall (M2 method), (iii) De Michele et al. (2001) method
to represent methods that rely on the notion of scaling and statis-
tical self-affinity (M3 method), and (iv) the method proposed by
Overeem et al. (2010) for methods that utilize extreme value the-
ory (M4 method).

3.1. M1 method

The M1 method is based on the original empirical ARF method
developed by the NWS predecessor (US Weather Bureau, 1958).
The Weather Bureau developed a set of curves to transform point
rainfall to areal rainfall for durations between 1 and 24 h and areas
up to 1000 km2. These ARFs (hereafter referred to as ARFWB) were
assumed to be independent of the average recurrence interval.
ARFWB were estimated using the data from several rain gauge net-
works located in different geo-climatic regions and are applicable
to the whole US. The number of gauges in each network varied
from 5 to 13 (over areas of �800 km2) and their record lengths var-
ied from 7 to 15 years. It is relevant to note that, despite the fact
that many new methods have been proposed since 1958, the
ARFWB curves are still commonly used in engineering design in
the US.

We implemented the Weather Bureau’s approach for ARF calcu-
lation with one modification regarding the extraction of areal AMS.
Areal AMS in the Weather Bureau’s method were calculated as
averages of corresponding AMS at gauged locations, while here
we first created areal rainfall grids from the original radar grids
and then used them to extract areal AMS at selected locations.

The ARF from method M1 (ARF1) is computed as

ARF1ðD;AÞ ¼ PðD;AÞ
PðD;A�Þ ; ð1Þ

where P [L] is the depth of the mean areal annual maximum precip-
itation for selected area A and duration D, and A⁄ denotes the area of
a single grid cell. Similarly to the Weather Bureau’s method, M1
does not account for ARI, and consequently, the ARF1 curves are
assumed to be applicable across all ARIs.

3.2. M2 method

The Sivapalan and Blöschl (1998) method (M2 method) utilizes
the spatial correlation structure of rainfall for the ARF derivation.
An assumption is made that the point parent rainfall is exponen-
tially distributed and that the areal average parent rainfall is
Gamma distributed (Sivapalan et al., 1990; Wood and Hebson,
1986; Yoo et al., 2007). The variance of the areal average rainfall
is set equal to the product of the variance of the point rainfall
and the variance reduction factor j2, which is given by
(Rodriguez-Iturbe and Mejía, 1974)

j2 ¼
Z Rmax

0
qðrÞf RðrÞdr; ð2Þ

where r [L] is the distance between any two points randomly cho-
sen within a square area A [L2], q(r) is the spatial correlogram,
fR(r) is the probability distribution for distance R (i.e., the random
variable whose realization is r), and Rmax is the maximum possible
distance between any two points in A. A mathematical expression
for fR(r) is given by Ghosh (1951). Eq. (2) has no analytical solution,
thus it must be solved numerically.

Different functions can be used to model the spatial correlo-
gram (e.g., exponential, nested double-exponential, nested expo-
nential function) (Blöschl and Sivapalan, 1997; Bras and
Rodríguez-Iturbe, 1985; Sivapalan and Blöschl, 1998; Sivapalan
et al., 1990). Here we use the correlogram proposed and used with
rain gauge data in central Oklahoma by Ciach and Krajewski (2006)
and Mandapaka et al. (2009),

qðrÞ ¼ exp½�ðr=kÞc�; ð3Þ
where k [L] is the spatial correlation length and c is the power expo-
nent. The selection of the spatial correlogram is further discussed in
Section 4.2.

For the AMS data, the point and areal values are both assumed
to follow a Gumbel distribution. First, the maximum likelihood
approach is used on the ‘‘point” regional AMS data to obtain the
scale a⁄ [L�1] and location l⁄ [L] parameters of the Gumbel distri-
bution for each duration D. The ‘‘point” regional AMS data refers to
the regional AMS data at the smallest spatial scale implied by the
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data. For radar data, this is the area of a single grid cell, A⁄. The fol-
lowing functions are then used to relate the distribution parame-
ters with the duration

a� ¼ aa þ baD
ca ; and ð4Þ

l� ¼ al þ blD
cl ; ð5Þ

where aa, ba, ca, al, bl, and cl are fitting parameters.
The Gumbel distribution parameters for the areal AMS, aA [L�1]

and lA [L], are defined as follows (Sivapalan and Blöschl, 1998)

aA ¼ a�j�2½1� 0:17 lnðj�2Þ�; and ð6Þ

lA ¼ l�j�2½0:39þ 0:61ðj�2Þ0:8�: ð7Þ
All the parameters in Eqs. (6) and (7) were defined previously.

Lastly, using the inverse of the Gumbel cumulative distribution
function, together with Eqs. (2)–(7), the ARF for method M2 (ARF2)
can be expressed as follows

ARF2ðD;A;ARIÞ ¼
a� aAlA � ln � lnð1� ARI�1Þ

h in o
aA a�l� � ln � lnð1� ARI�1Þ

h in o ; ð8Þ

Notice that the dependence of ARF2 in Eq. (8) on A and D is implicit
through the dependence of aA and lA on A (through j) and of a⁄ and
l⁄ on D.

3.3. M3 method

The M3 method (De Michele et al., 2001) uses the concepts of
dynamic scaling and statistical self-affinity to find a general
expression for the mean annual maxima P as a function of the rain-
fall duration D and area A. The ARF from method M3 (ARF3) is com-
puted by fitting a general expression to the ARF1 estimates. Similar
to method M1, M3 does not account for ARI, and therefore the ARF3
from Eq. (14) is applicable across all ARIs.

In M3, an assumption is made that the rainfall field has dynamic
scaling properties expressed through the following relationship

Dj

Dl
¼ Aj

Al

� � z

; ð9Þ

where z (z > 0) is the dynamic scaling exponent, and the subscripts j
and l represent different scales. The rainfall field i(D,A) [L/T], which
represents the intensity parametrized in time and space through
duration D and area A, follows a condition of statistical self-
affinity by combining Eq. (9) and an assumption of scale invariance
in the statistical sense:

fiðfaD; fbAÞg¼d f�HfiðD;AÞg; ð10Þ
where f = Aj/Ai, a(a > 0) and b = az�1 are scaling exponents, and H
(H > 0) is a constant known as the Hölder exponent. The nota-

tionf:g¼d f:g indicates that the two underlying probability distribu-
tions are equal (after rescaling by a factor).

Accordingly, the average rainfall intensity i [L/T] (i = P/D) is
equal to

iðD;AÞ ¼ D�mg
Aa

Db

� �
; ð11Þ

where m ¼ H=a. Based on asymptotic and scaling arguments, g(�) can
be represented by

g
Aa

Db

� �
¼ a1 1þx

Az

D

� �b
" #�m=b

; ð12Þ

where a1 and m can be obtained using
iðD;A�Þ ¼ a1D
�m ð13Þ

andx [TbL�2a] is a normalization constant. A⁄ is the smallest spatial
scale implied by the data, a single radar grid cell in this case.

Combining Eqs. (11) and (12), and dividing by (13), the ARF
from the M3 method (ARF3) is equal to

ARF3ðD;AÞ ¼ 1þx
Az

D

� �b
" #�m=b

: ð14Þ

Eq. (14) is calibrated to the ARF1 estimates and requires the estima-
tion of four parameters (m, b, x, and z).

3.4. M4 method

For the M4 method (Overeem et al., 2009, 2010), the ARFs are
estimated from precipitation frequency estimates obtained by fit-
ting the Generalized Extreme Value (GEV) distribution, F(P), to
the mean regional AMS data P for each combination of chosen
duration D and area size A. The GEV is given by

FðPÞ ¼
exp � 1þ k

a ðP � lÞ� ��1=k
n o

for k – 0;

exp � exp � ðP�lÞ
a

h in o
for k ¼ 0;

8><
>: ð15Þ

where l [L], a [L] (a > 0), and k are the location, scale, and shape
parameters of the GEV distribution, respectively. We used the max-
imum likelihood approach, as recommended by Overeem et al.
(2010), to estimate the GEV distribution parameters.

For each duration, the following empirical relationships are
used to account for the dependency of the GEV distribution param-
eters on the area size

lA ¼ alA
2 þ blAþ cl; ð16Þ

aA ¼ aa þ baAþ ca; and ð17Þ

kA ¼ ak lnAþ bk; for A > 0: ð18Þ
where al, aa, ak, bl, ba, bk, cl and ca are parameters that need to be
estimated empirically from the GEV distribution parameters. Eqs.
(16)–(18) used in the M4 method are different from the ones used
by Overeem et al. (2010). Their equations account explicitly for the
dependence of the GEV parameters on both, A and D. In this case, we
found that fitting a separate set of equations to each duration
results in more reliable ARF estimates. This is discussed further in
Section 4.4.

Lastly, by inverting Eq. (15), the relationship between the pre-
cipitation magnitude and both the area and frequency, for each
duration, is given by

PðA;ARIÞ ¼ lA þ
aA ½� lnð1�ARI�1Þ��kA�1
� �

kA
for k – 0;

lA � aAln½� lnð1� ARI�1Þ� for k ¼ 0;

8<
: ð19Þ

and the ARF can be calculated as

ARF4ðD;A;ARIÞ ¼ PðD;A;ARIÞ
PðD;A�

;ARIÞ ; ð20Þ

where ARF4 indicates the ARF from the M4 method.

4. Results

In this section, we present the ARF curves for each of the four
methods evaluated in this study. We analyzed ARFs for the 1-h,
2-h, 6-h, 12-h and 24-h durations but, for clarity, results are shown
and discussed for the 1-h and 24-h durations only. Similarly,
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results for the methods M2 and M4, which account for the ARF
dependence on the ARI, are shown only for the 2-yr and 100-yr ARI.

4.1. ARF1 curves

Fig. 2 shows the ARF1 curves for the 1-h and 24-h durations,
with the corresponding ARFWB curves. To reveal the range of vari-
ability in the ARF1, we also show the ARF1 curves calculated sepa-
rately for each of the 386 selected locations. Since the ARFs in
both the Weather Bureau and M1 method are assumed indepen-
dent of the ARI, the ARFWB and ARF1 curves should be considered
valid across all ARIs.

The ARF1 is consistently more conservative than the ARFWB and
the difference between the two is more pronounced for the shorter
durations (Fig. 2). For example, for A = 500 km2, the difference
between ARF1 and ARFWB for the 24-h duration is �0.04 (0.96
and 0.92, respectively) while for the 1-h duration is �0.12 (0.79
and 0.67, respectively). Although the ARFWB method was applied
on the point gauge data and the highest resolution for the ARF1
method was the area of a single grid cell, we attribute the differ-
ences between the values of ARF1 and ARFWB primarily to the differ-
ent datasets used to estimate these ARFs. The ARF1 is based on
NEXRAD Stage IV data, which is the most recent gauge-
conditioned hourly radar precipitation data available at �4 km grid
resolution and captures spatial information reasonably well. While
the ARFWB were estimated from interpolated grids and sparse rain
gauges with measurements collected before 1960s and over very
few years. Additionally, in the M1 method, we used only Oklahoma
data, while in the Weather Bureau’s study, data comes from gauge
networks from different parts of the US.

4.2. ARF2 curves

The application of the M2 method requires the estimation of
seven parameters (j2, aa, ba, ca, al, bl, cl). To estimate the value
for the variance reduction factor j2, the correlation length k needs
to be determined first based on the AMS data at the single grid cell
scale (A⁄). For the data analyzed, the spatial correlogram function
from Eq. (3) provided the best fit among all the different functions
tested, where the c parameter was estimated to be 0.8 for the 24-h
duration and 0.62 for the 1-h duration. Fig. 3(a) and (b) shows the
correlograms for the 24-h and 1-h durations, respectively, together
Fig. 2. ARF1 and ARFWB curves for the 1-h and 24-h durations for areas up to 1300 km2.
curves for the M1 method for each of the selected sites. (For interpretation of the refere
article.)
with the correlation coefficients calculated between the mean AMS
data for each pair of the 386 selected locations. Although Eq. (3)
provides a reasonably good fit with a coefficient of variation R2

of 0.94 and 0.87 for the 24-h and 1-h duration, respectively, there
is significant scatter around the fitted curves. The correlation
lengths k (indicated by the vertical red lines in Fig. 3) were
estimated to be �221 km for the 24-h duration and 45 km for
the 1-h duration.

To estimate j2, we solved Eq. (2) numerically using the solution
for fR(r) derived by Ghosh (1951). Table 1 summarizes the j2 values
for selected combinations of D and A. To estimate the remaining
parameters (i.e., aa, ba, ca, al, bl, cl), we first calculated the scale
and location parameters of the Gumbel distribution, for each dura-
tion, at the single grid cell scale (a⁄ and l⁄). We then fitted Eqs. (4)
and (5) to these data. The fitted equations are shown in Fig. 4. The
R2 values associated with Fig. 4(a) and (b) were in both cases
�0.99. The estimated values of aa, ba, ca, al, bl and cl were
4.0608, 42.6485, �1, 0, 0.044, and 1, respectively. Together with
the j2 values shown in Table 1, these parameters values were used
to find aA and lA for selected area sizes (Eqs. (6) and (7)) and, lastly,
to calculate the values of ARF2 for ARIs between 2 and 100 years.

In Fig. 5, we show the ARF2 curves for the 24-h and 1-h dura-
tions and for the 2-yr and 100-yr ARIs. From this figure, the ARF2
values decrease relatively fast for areas up to �300 km2, after that,
they continue to decrease but at a slower rate. In addition, we cal-
culated the ARF2 curves separately for each of the 386 selected
locations and from these curves we determined error bars for
one standard deviation. The error bars in Fig. 5 are relatively nar-
row since for this method only the point and not the areal precip-
itation data are used. Fig. 5 also shows that the dependence of ARF2
on the ARI is relatively weak (particularly for the 24-h duration)
but statistically significant when uncertainty, represented by the
error bars, is considered. For example, for 24-h duration and
A = 1000 km2, the difference between the 2-yr and 100-yr ARF2 is
0.02 (0.94 and 0.92 respectively). For 1-hr duration, the difference
is more significant and for the same area it is about 0.06.

4.3. ARF3 curves

The M3method requires the estimation of four parameters (m, b,
x, and z). First, we estimated the parameter m by fitting the power
law function between the single-grid cell mean regional annual
To illustrate the spread around the mean values, we also show the individual ARF
nces to colour in this figure legend, the reader is referred to the web version of this



Fig. 3. Spatial correlogram q(r) for the M2 method for the (a) 24-h and (b) 1-h duration. The red lines indicate the estimates of the spatial correlation length k. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Variance reduction factor j2 for the M2 method as a function of the duration D and
area A.

j2 A (km2)

16 144 400 784 1296

D (h) 24 0.9767 0.9456 0.9195 0.8963 0.8749
12 0.9526 0.9040 0.8675 0.8370 0.8101
6 0.9285 0.8623 0.8155 0.7777 0.7454
2 0.8903 0.7964 0.7331 0.6837 0.6428
1 0.8662 0.7548 0.6811 0.6244 0.5781
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maxima for each of the 5 selected durations and the corresponding
durations (Eq. (13)) using nonlinear regression. The fitted function,
with parameter values a1 = 37.40 [mm h�1] and m = 0.697, provided
a nearly perfect fit with R2 = 0.99. We then estimated the remain-
ing three parameters (b, x, and z). For this, we fitted Eq. (14)
directly to the empirical ARFs derived from the radar data (i.e.,
ARF1). We simultaneously fitted the 5 different ARF curves repre-
senting each of the 5 durations considered. This fitting was done
Fig. 4. Parameters for the Gumbel distribution as a function of the duration D: (a) l⁄ ve
Eqs. (4) and (5)).
using a version of the Nelder–Mead optimization algorithm
(Lagarias et al., 1998). For the objective function, we used the mean
of the squared errors e2, as follows

e2 ¼ 1
ND

1
NA

XND

p¼1

XNA

j¼1

½ARF3ðDp;AjÞ � ARF1ðDp;AjÞ�2; ð21Þ

where the subscripts j and p represent different area sizes and dura-
tions, respectively. NA and ND are the total number of different area
sizes and durations, respectively; in this case both NA and ND are
equal to 5. Notice that in order to determine the error in Eq. (21),
we needed an estimate of ARF1 for each combination of area size
and duration. A similar objective function to Eq. (21) was success-
fully used by Koutsoyiannis et al. (1998) for fitting Intensity–Dura
tion–Frequency curves. The parameter values obtained for b, x,
and z were 0.5985, 0.004, and 1.0914, respectively.

Fig. 6 shows the regional ARF3 curves from Eq. (14) for the 24-h
and 1-h durations together with error bars representing one stan-
dard deviation of the site specific results. The error bars were
determined using the ARF curves associated with each of the 386
selected locations. Since method M3 does not account for the
rsus D, and (b) a⁄ versus D. These parameters are used in the M2 method (see, e.g.,



Fig. 5. ARF2 curves for the 2-yr and 100-yr ARIs and 24-h and 1-h durations. The error bars indicate ±1 standard deviation computed based on the estimation of the ARF2 at
each of the selected sites.

Fig. 6. ARF3 curves for the 24-h and 1-h durations. The ARF1 empirical estimates are also shown as dots. The M3 method does not account for the possible dependence of the
ARF on the ARI. The error bars indicate ±1 standard deviation computed based on the estimation of the ARF3 at each of the selected sites.
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effects of the ARIs on the ARFs, the ARF3 curves in Fig. 6 are consid-
ered applicable across all ARIs. Overall, the fits in Fig. 6 are reason-
able but, as the error bars indicate, there is significant spread
around the ARF3 curves.

4.4. ARF4 curves

To implement the M4 method, we first estimated the GEV dis-
tribution parameters l, a and k from Eq. (15) using the maximum
likelihood method, together with the areal AMS data for each
combination of selected area size and duration. For each duration,
we then found the parameters al, aa, ak, bl, ba, bk, cl and ca in
the empirical Eqs. (16)–(18), which describe the dependency of
the GEV parameters on the area size. To estimate these parame-
ters, we again used a version of the Nelder–Mead optimization
algorithm, which was used before for the M3 method, with the
objective function shown in Eq. (21). This time the errors were
computed as the difference between the GEV parameters
obtained by the maximum likelihood approach and the corre-
sponding parameters obtained from Eqs. (16)–(18). The fitting
of Eqs. (16)–(18) is illustrated in Fig. 7(a–c) for parameters aA,
lA, and kA, respectively. For all three parameters, the R2 values
for all the fitted curves are above 0.98. For the shape parameter
kA, we used a single equation to represent all the durations, as
we did not find any appreciable gains in using separate equa-
tions. Additionally, we tried different equations when fitting the
GEV parameters to the areas, but Eqs. (16)–(18) provided the best
fits. The parameters from Eqs. (16)–(18) are summarized in
Table 2.

Eq. (19) was used to determine precipitation frequency esti-
mates for selected area sizes and ARIs for a given duration. These
estimates were used in Eq. (20) to find the ARFs as a function of
A, D, and ARI. These estimates are shown in Fig. 8 for the 2-yr
and 100-yr ARIs. Fig. 8 reveals the ARF4 dependence on ARI. The
100-yr ARF estimates are lower than the corresponding 2-yr esti-
mates across all the analyzed durations and areas and the differ-
ence can be as large as 8% for the larger area sizes. Fig. 8 also
shows the error bars for 1 standard deviation of the site specific
curves, calculated based on the ARF3 for each of the 386 selected
locations for both the 24-h and 1-h durations and for the corre-
sponding 2-yr and 100-yr ARIs. The error bars indicate that the
spread around the regional estimates can be significant.



Fig. 7. Parameters for the GEV distribution as a function of the area for selected durations: (a) lA versus A, (b) aA versus A, and (c) kA versus A. For lA and aA, a separate curve is
fitted for each duration. For kA, a single curve is fitted for all the durations.

Table 2
Coefficients for the empirical Eqs. (16)–(18) from the M4 method. These equations describe the dependence of the parameters from the GEV distribution (lA , aA , and kA) on the
area size A.

D (h) al bl cl aa ba ca ak bk

24 2.56E�06 �0.0067 77.9733 1.13E�06 �0.0029 25.5984 �2.80E�05 0.0610
12 3.22E�06 �0.0083 66.7251 1.28E�06 �0.0034 21.3492 �2.80E�05 0.0610
6 3.81E�06 �0.0100 55.4610 2.02E�06 �0.0050 17.1404 �2.80E�05 0.0610
2 5.30E�06 �0.0135 39.4948 2.34E�06 �0.0059 11.9268 �2.80E�05 0.0610
1 5.66E�06 �0.0140 29.4940 2.35E�06 �0.0056 8.8337 �2.80E�05 0.0610

Fig. 8. ARF4 curves for the 2-yr and 100-yr ARIs and the 24-h and 1-h durations. The error bars indicate ±1 standard deviation computed based on the estimation of the ARF4 at
each of the selected sites.
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5. Intercomparison of ARFs

In this section, we compare the ARF estimates from the four
selected methods. The comparison is done first for the ARFs calcu-
lated using the mean AMS and then for the ARFs calculated using
the precipitation frequency estimates for the 2-year and 100-yr
ARIs.
5.1. Comparison of ARFs calculated using the mean AMS

In Fig. 9(a) and (b), we show the ARF curves, which were derived
using the4 selectedmethods, for themean annualmaxima, together
with the original Weather Bureau’s ARF curves for the 24-h and 1-h
durations, respectively. Fig. 9(a) shows that for the 24-h duration
the ARF curves from all the four methods are similar. The ARFWB



Fig. 9. ARF curves for the mean annual maxima and for the (a) 24-h and (b) 1-h durations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. ARF curves for the 2-yr and 100-yr ARIs and for the (a) 24-h and (b) 1-h durations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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estimates are slightly lower than the estimates fromthe othermeth-
ods, but the differences are relatively small. For example, for
A = 500 km2, ARF1, ARF2, ARF3 and ARF4 are equal to 0.96, 0.95, 0.95,
and 0.95, respectively, and the corresponding ARFWB is 0.92.

For the 1-h duration (Fig. 9(b)), differences are more pro-
nounced. ARFWB decreases much faster than the ARFs from the
other methods, including ARF1, even though the Weather Bureau’s
and M1 methods are fundamentally the same (as discussed in Sec-
tion 3.1, we attributed differences between the M1 and the
Weather Bureau’s method primarily to differences in the AMS data
used to estimate ARF1 versus the data used for ARFWB). The ARF1
and ARF3 curves are relatively close to each other, which is not sur-
prising as the ARF1 estimates were used to calibrate the parameters
of the M3 method. The ARF2 estimates decrease faster than the
ARFs from M1, M3, and M4 for areas up to �300 km2, but for larger
area sizes the decline is very gradual and, for areas greater than
600 km2, the ARF2 estimates are larger than the estimates from
any of the other methods. For A = 750 km2, for example, ARF1,
ARF2, ARF3 and ARF4 are equal to 0.75, 0.8, 0.75, and 0.75, respec-
tively and the corresponding ARFWB is noticeably lower at 0.69.
5.2. ARF dependence on the ARIs

Among the 4 selected methods, only two (M2 and M4) are built
to account for the potential dependence of the ARF on ARI. For the
other methods, we assumed that the ARFs calculated for the mean
annual maxima apply across all ARIs. Due to the limited number of
data years (12 years), we limited the analysis to ARIs to be between
2 and 100 years. In Fig. 10(a) and (b), we show the ARF2 and ARF4
curves for the 2-year and 100-year precipitation frequency esti-
mates for the 24-h and 1-h durations, respectively. The ARF curves
from the other methods are also shown for reference purposes. For
the 24-h duration (Fig. 10(a)), the effect of the ARI is generally very
small. For example, for A = 1500 km2, the difference between the
ARFs for the 2-yr and 100-yr ARI is about 0.03 for ARF2 and about
0.06 for ARF4. The ARFs from the other methods match closely
the ARF2 and ARF4 curves for the 2-yr ARI.

For the 1-h duration (Fig. 10(b)), the influence of ARI on the ARF
is more prominent. The difference between the ARF for the 2-yr and
100-yr ARI varies with the area but, generally, it is about 0.08 for
both the M2 and M4 method. For the selected study area, the
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ARF1 and ARF3 curves, which were developed based on the analysis
of the mean AMS, fall within the range of the 2-yr and 100-yr ARF2
and ARF4 curves.
6. Summary and conclusions

The ARF is a concept used in many engineering designs to trans-
form a point precipitation frequency estimate of a given duration
and frequency to a corresponding areal estimate. Typically, ARFs
are presented as a set of curves showing their variation with area,
duration, and average recurrence interval (also called return
period).

Many ARF curves have been proposed in the literature and they
can vary considerably. Our goal with this study was to understand
if there would still be significant discrepancies in the ARFs when
different methods are used on the same dataset for the same geo-
graphic region. We calculated ARFs using four different methods
that represent the most commonly used fixed-area ARF approaches
(which are suitable for use with precipitation frequency esti-
mates): (i) for empirical methods, we used a variation of the US
Weather Bureau’s (1958) method (M1 method); (ii) for methods
that are based on the spatial correlogram of rainfall, we used
Sivapalan and Blöschl (1998) method (M2 method); (iii) for meth-
ods that rely on the notion of scaling, we employed De Michele
et al. (2001) method (M3method); and (iv) for methods that utilize
extreme value theory, we followed Overeem et al. (2010) approach
(M4 method). In addition, all ARFs were contrasted to the original
US Weather Bureau’s ARFs, which are still commonly used in engi-
neering applications in the US.

We selected the state of Oklahoma as the study area, primarily
due to its relatively dense network of rainfall gauges and availabil-
ity of high-quality radar data. Quality controlled precipitation data
from 386 rain gauges was readily available to us from the NOAA
Atlas 14 Volume 8 precipitation frequency project (Perica et al.,
2013). We derived initial ARF curves from the rain gauge data only,
but we observed that the spatial interpolation method had a signif-
icant influence on the ARFs, especially at the hourly durations. As a
result, for this study, we decided to use an hourly rain, gauge-radar
merged, gridded precipitation product (NCEP’s Stage IV), available
for the period between 2002 and 2013.

From the Stage IV data, we created areal rainfall grids and used
them to extract areal AMS at 386 locations that matched the loca-
tions of the rain gauges from the NOAA Atlas 14 Volume 8. The
AMS were extracted for areas between 16 km2 (corresponding to
a single grid cell area) to 1296 km2 (9 � 9 grid cells) at 1-h, 2-h,
6-h, 12-h and 24-h durations. AMS were then used in the four
selected methods to calculate the ARFs.

ARF analysis based on only 12 years of Stage IV data is likely the
most significant limitation of this study. Similar to what has been
done in some previous studies (e.g., Overeem et al., 2010), we
sought to overcome this limitation by using a regional approach
in calculating ARF curves. The regional approach pools data from
all locations inside a delineated homogeneous region, as opposed
to using data from a single site, thus creating a larger dataset
and supporting the estimation of more reliable ARFs. One concern
with this approach is the homogeneity of the selected region. To
delineate our homogeneous region, we relied on previous regional-
ization work done as part of the development of the NOAA Atlas 14
Volume 8 products (Perica et al., 2013). However, to further
demonstrate that the region selected for this study is homoge-
neous with respect to the ARF, we divided the region into four
sub-regions of similar size and computed empirical ARF curves
for each sub-region for the 1-hr and 24-h durations. The corre-
sponding sub-regional ARF curves (not shown) matched each other
closely and they all agreed well with the corresponding ARF curves
derived for the whole region. Thus, we concluded that the selected
region could be considered homogenous with respect to the ARF.

Another potential concern that can arise from using gridded
precipitation products that are derived from merged radar and
gauged data, such as the Stage IV data, has to do with quality of
the data itself. To address this concern, we compared for our
selected region the daily ARF curve based on the merged Stage IV
data against the ARF curve from a gauged-derived product. For
the gauged-derived product, we used the PRISM data (PRISM,
2014). From this comparison (figure not shown), we found that
the daily ARF curves obtained using the Stage IV and PRISM data
match each other closely. Thus, we deemed the use of the Stage
IV data in this case reasonable. However, this may not be the case
in other locations.

In this study, we first compared ARF curves calculated from the
averages of the AMS data and contrasted them to the Weather
Bureau’s curves. We also looked at the range of uncertainties in
the ARF curves. This analysis revealed several important
conclusions:

� For all the methods, there is significant scatter of the individual
ARF curves (calculated at 386 selected locations) around the
corresponding regional ARF curves, which indicates a significant
amount of uncertainty in the regional ARF estimates.

� For the 24-h duration, the ARFs from all the four methods were
alike for all the area sizes analyzed. The differences became
more pronounced as the duration decreased.

� For the selected study area, the ARF estimates from all the four
methods were more conservative than the corresponding
Weather Bureau’s estimates across all the durations and area
sizes considered. The difference is most significant at the 1-h
duration where the Weather Bureau’s ARFs are about 0.1–0.2
lower than the ARFs from any of the other methods considered
here.

� The M1 method follows the same approach as the US Weather
Bureau’s method, but the ARFs from the two methods differ.
We attributed these differences primarily to the data used to
estimate the ARFs. However, since the Bureau’s curves were cal-
ibrated on rain gauge data from across the whole US, they may
also point to some regional uniqueness of the ARFs.

� The ARF estimates from the M2 method depend strongly on the
spatial correlogram function and its correlation length parame-
ter. We observed differences in these ARFs of 0.15 or more
depending on the choice of this function. Additionally, choosing
this function is complicated by the significant scatter of the cor-
relation coefficients around the fitted curve. On the other hand,
the key advantage of this method is that it does not require
areal precipitation data, thus allowing the use of point precipi-
tation data from rain gauges with long record lengths.

� The M3 method, which relies on scaling arguments, was the
most straightforward to implement among the 3 theoretical
ARFmethods (M2, M3, and M4). In the M3method, a single scal-
ing equation, which requires the estimation of very few param-
eters, is needed to reproduce the ARFs. For the selected study
area, the scaling equations were flexible enough to match the
empirical ARFs across all the analyzed area sizes and durations.
However, the generality of the M3 should be further assessed by
implementing the M3 method in other regions with different
climatic characteristics.

� The M4 method has a significant advantage over the other
methods that, in essence, it follows the frequency analysis
approach used in many precipitation frequency studies, includ-
ing the NOAA Atlas 14. This could potentially facilitate the con-
sistent and more efficient transfer of information (e.g., the GEV
distribution parameters) between the point precipitation fre-
quency and ARF studies. The M4 method is somewhat more
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involved to implement than the other methods as it requires
calibration of many empirical parameters to develop relation-
ships between the GEV parameters and the area. However,
based on this study, we do not foresee that this would be a
problem in other applications as the relationships have a simple
form and yielded very good fits. The main disadvantage of the
M4 method is that the ARF accuracy depends considerably on
the record length, as relatively long records are needed for reli-
able frequency analysis. This problem will diminish as the sam-
ple size of the radar data increases.

We also examined the ARI’s influence on the ARF. Due to the
limited number of years in the data, we narrowed this analysis
to ARIs between 2 and 100 years. Since the M1 and M3 method dis-
regard the ARI’s influence on the ARF, for these two methods we
assumed that the ARFs calculated using the mean annual maxima
apply across all the ARIs. The methods M2 and M4 show that even
with significant uncertainties in the estimates, the ARI’s influence
on the ARF should be accounted for, as there is a clear separation
of the ARF curves with longer ARIs. The dependency of the ARI on
the ARF is more pronounced for the shorter durations.

In conclusion, the choice of the ARF method has a marked influ-
ence on the ARF estimates, especially for the hourly durations. The
differences among the ARFs from the different methods are more
pronounced for the larger areas and for longer ARIs.

We plan to duplicate this work in other regions to test the influ-
ence of geographical variations on the ARFs. Regions with different
extreme precipitation climatology are expected to have distinct
characteristics of point and areal AMS data and precipitation fre-
quency estimates, but it still remains to be seen if that has a statis-
tically significant influence on the ARFs.
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